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Creation and dynamics of vortex tubes in three-dimensional turbulence
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We examine the possibility of a blowup of the vorticity due to self-stretching and mechanisms for its
prevention. We first estimate directly from the Navier-Stokes equations the length scale of coherence in
the direction of the vortex lines to be of the order of the Kolmogorov length. Alignment of vortex lines
is seen to be a viscous phenomenon and may prevent some scenarios for blowup. Next we derive equa-
tions for the curvature and torsion of vortex lines. We show that the same stretching that amplifies the
vorticity also tends to straighten out the vortex lines. Then we show that in well-aligned vortex tubes,
the self-stretching rate of the vorticity is proportional to the ratio of the vorticity and the radius of cur-
vature. Thus blowup of the vorticity in such tubes can be prevented by the growth of the vorticity being
balanced by the straightening of the vortex lines. Implications for vorticity-strain alignment and the
scaling theory of turbulence are noted. Finally, we examine the effects of viscous diffusion on the vortici-
ty field and see how viscosity can lead to organization and alignment of vortex lines.

PACS number(s): 47.27.—i

I. INTRODUCTION

In direct simulations of strong isotropic turbulence
[1,2] one observes that regions of high vorticity are or-
ganized into a collection of well-aligned structures and in
particular tubelike structures. It is our intention to inves-
tigate this phenomenon in relation to two fundamental
problems in fluid mechanics. The first is the question of
the regularity of the solutions of the initial value problem
of the Navier-Stokes equation [3], and the second is the
issue of scaling exponents in turbulence [4,5]. In this pa-
per we discuss the structure of high vorticity regions and
its connection to these two problems.

The vorticity field @(x,?) in a fluid is the curl of the ve-
locity filed u(x,?), @(x,t)=V Xu(x,t). The velocity field
u(x,?) is assumed to attain its largest variations (which
are denoted by U) on a scale L (the “integral scale”). The
Reynolds number Re is defined as UL /v, where v is the
viscosity. In incompressible flow the equation of motion
of the vorticity reads

S

at

The magnitude of w(x,¢) is denoted by w, w = |w(x,1)|.
Its equation of motion will be important for much of our
analysis below. To obtain this equation, multiply Eq. (1)
by @ and divide by w. The resulting equation reads (for
w+#0)

D,o= +u-Vo=0-Vu+vWo . (1)

aa—';’+u-Vw—vv2w=(a—v|vgl2)w , )
where £ =o /w and

a=§(&-Vu. (3)
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Thus « is the diagonal component in the & direction of
the strain tensor, which is the symmetric part of Vu.

The strain can be expressed as a nonlocal linear opera-
tor of the vorticity, the vorticity acting as a source for the
strain (the expression can be found in Sec. IV). Since the
local contribution to the strain is proportional to the lo-
cal vorticity, the first term on the right-hand side of (2) is
potentially quadratic. A quadratic nonlinearity could
cause a finite time singularity. It is not known whether a
singularity can appear spontaneously in sclutions of the
Navier-Stokes equations. The phenomenon where the
stretching rate a of the vorticity is indeed induced locally
by the vorticity, thus leading to a rapid growth of the
vorticity magnitude, is called self-stretching.

Can the vorticity field be organized so that a finite time
blowup is avoided? In our analysis below we examine as-
pects of the structure both of interest in themselves and
of relevance to this process. In the first part of the paper
we show that indeed such an organization is possible and
even plausible and see, conversely, what the implications
for the structure of the vorticity are if we assume that a
blowup does not occur. We also apply the results of our
analysis to vortex tube structures of the type seen in nu-
merical simulations.

The picture of vortex tubes used in this paper is of
coherent bundles of vortex lines, or those lines whose
tangent at any point is in the direction of the vorticity
field. In other words, we study the spatial structure of
the vorticity direction as the quantity of interest. We will
therefore examine the vector field £ defined above and
form length scales from the rates of change of £ in space,
proposing the local direction gradient as a measure of
vortex tube width and the local curvature of the vortex
lines as a measure of vortex tube curvature. These are

3207 ©1995 The American Physical Society



3208

the length scales most relevant to how the strain is in-
duced by the vorticity and therefore for the nonviscous
dynamics of the vorticity. Our analysis of the structure
of vorticity should allow us to understand two length
scales that characterize the vortex tubes: their width and
their radius of curvature. In defining these length scales
the most common approach is to look at isosurfaces or
Gaussian profile widths of vorticity magnitude. Such a
procedure, however, is ill defined. Rather we opt, in this
paper, to define everything unambiguously in terms of lo-
cal field variables.

For these scales to be relevant for defining vortex tubes
we must first show that the vorticity field is indeed
aligned. In Sec. II we bound the divergence of the vortex
lines in terms of the dissipation; the bound is seen to stem
from viscous effects. In terms of £ this means that |V£]
must be small. The value of |V&| ™! is a measure of the
length scale over which directional coherence is main-
tained. We obtain a bound from below for the mean
value (over a short time and a small ball) of A, in terms of
quantities that are familiar to the students of turbulence.
Indeed it turns out that the diameter of the tubes A, is
not a new length in the theory of turbulence, but is just a
local version of the Kolmogorov scale. This is the first
testable prediction of the theory. This scale is seen as
that at which the rate of amplification by strain is bal-
anced by the rate of diffusion out of the tube. We suggest
that this can be checked in numerical calculations. We
note that in a recent study by Jiménez et al. [6] the diam-
eter of vortex tubes is evaluated from the Gaussian profile
width of the vorticity magnitude for Reynolds numbers
from 35 to 170; their conclusion is that this width scales
with the Kolmogorov length. In fact, this scale was pro-
posed some time ago [7] for this width. This scale is then
offered as an estimate of vortex tube width in terms of
coherence of direction. We suggest that in scenarios in
which vorticity blows up through convergence towards
vortex line corners or cusps [8,9], the vorticity will be
controlled by the viscosity at this scale.

The understanding of the other length scales involved,
in particular, the radius of curvature, takes us, in Sec. III,
to the Euler dynamics of the vortex structures. We will
see that there exists a mechanism that is responsible for
exponential growth of the radius of curvature of vortex
lines at the same rate of growth as the vorticity magni-
tude w. Thus the picture that emerges is that in those re-
gions in which the vorticity becomes intense there exists
a process of alignment and straightening of the vortex
lines, in agreement with the phenomenological observa-
tions of long vortex tubes in which the vortex lines are
strongly aligned [10].

In Sec. IV we discuss a way to avoid a blowup due to
the quadratic growth rate created by a persistent curva-
ture of a vortex tube. We show that in the specific case of
well-aligned vortices, the growth rate should be propor-
tional to the ratio of the vorticity and the radius of curva-
ture. By the results of Sec. III a blowup can be avoided if
the curvature shrinks at the same rate as the vorticity
grows.

In Sec. V we discuss the connection of the present to-
pics to the scaling theory of turbulence. We reiterate
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that deviations from the Kolmogorov predictions, if they
exist, can be due to the tendency towards the formation
of locally two-dimensional structures [S]. Regrettably,
we have to admit in this section that, although we have
an interesting mechanism for such a tendency, we are still
missing a very important link to the statistical theory of
turbulence in that we do not know presently how to as-
sess the contribution of the intense vorticity regions to
overall averages. If these regions concentrate on fractal
sets, as some authors have suggested, they may become
irrelevant for the statistical averages and the Kolmo-
gorov theory may be exact for sufficiently high Re. It is
our feeling the numerical simulations can be helpful in as-
sessing this issue and we make some comments in this
direction.

In Sec. VI we examine more closely the effects of
viscosity on vorticity and vortex structures. In the earlier
sections we ascribed the alignment of vortex lines to the
action of viscosity. Just how the viscous diffusion of the
components of a vector field can achieve such an effect
was left open however. We analyze the simplest case of
diffusion of a vector field—that of two-component vec-
tors on a line. Diffusion of vectors turns out to have
non-trivial effects and we see how diffusion can cause
alignment both by dissipating unaligned regions and by
dynamically realigning vortex lines. We see that we ex-
pect alignment to be particularly strong near maxima in
field strength.

In the Appendix we analyze the full three-dimensional
case. Here the situation is much more complex. We ex-
hibit the effect of viscosity on the vorticity magnitude
and direction in the Frenet frame and see that our
analysis of the two-dimensional vector case allows us to
understand much of what is happening; new three-
dimensional effects include new alignment effects. We see
that we expect alignment to be particularly strong in
strong vortex tubes.

II. LOCAL ALIGNMENT OF VORTEX LINES:
VISCOSITY AT WORK

In this section we will show that vortex lines tend to
align due to the action of viscosity. There exists a mean
scale characterizing the directional coherence, which we
denote by A.. We will interpret this scale below as the
“diameter” of the vortex tubes.

A. Definition of the directional coherence length

Our definition of the length A, follows from consider-
ing the spatial derivatives of the direction of vorticity.
Defining the vorticity direction vector as £=w /w, we ex-
amine the scale over which this unit vector changes its
direction significantly, which is measured by |V&| ™.
Clearly, this quantity, which has the dimension of a
length, is well defined everywhere in the fluid where w0
and can be measured at every such spatial point in nu-
merical simulations. We are interested here in regions of
stronger vorticity, so these points suffice. In order to be
able to estimate this length at some point x from the
equations of motion, we will average over a small ball
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around x which moves with the fluid and over an ap-
propriate interval of time. Explicitly, we define

1
)‘c(X) 47rr3t fly\<r yf dt|V§(x+u0t+y,t)|

=(Ivel),, (@)

the average being over a ball B, of some radius » around
x moving with velocity u,, the mean velocity of the fluid
in the ball

3
4mr3 Jlyl=r

u, u(x+y,t5)dy , (5)

and over some short time ¢,, starting at t,. The choice of
r and ¢, will be made later. In regions of large vorticity,
we can use the Cauchy-Schwartz inequality

(AB)<(A)VXB)'?,
taking A=1/Vw and B =Vw |VE| to write

< Ve 2( 4 )1 ®

B. Estimation of the coherence length

To estimate the first factor on the right-hand side of
Eq. (6) we follow the methods of [4]. We start with the
equation of motion for w, which has been written above

as Eq. (2). To get averages of the type appearing in
Egs. (4)-(6) we employ a cutoff function
&(x,1)=do[ (X —xg—uy?) /r], where the function ¢, is not

specified precisely and only needs to be such that
doly)=1 for |y| <1,4o(y)=0 for |y|>1, and ¢y(y) is
smoothed out sufficiently to have smooth derivatives.
Thus ¢ is a time-dependent weight function, with support
inside the moving ball of integration.

Multiplying Eq. (2) by ¢ and integrating over space we
get

vfdxw|V§|2¢=fdxawqb——%fdxwd)

+ [dx %—FwV—sz $lw. (7

At this point we have a choice of strategy. We can use
Eq. (7) to bound the left-hand side in terms of initial data
or in terms of evolving local quantities. The first strategy
has been investigated in Ref. [3], with the result that
(w|VE[*),, is bounded in terms of initial data. The
meaning of this result is that |V£| has to be small on the
(local) average in regions of sufficiently high vorticity.
This means that vortex lines align locally when w is large.

It turns out that these a priori bounds lead through (6)
to a definition of length scale that is very small, perhaps
unrealistically so. To achieve a physically more plausible
length we follow now the second strategy of bounding
(w|VE|*),, in terms of locally evolving quantities. Tak-
ing this route we shall need to choose r and ¢, further on
in the derivation. Returning to Eq. (7), we use the fact
that

2 v fg= Yy,  ®

and integrate over time in the interval (z,,t,+1¢,). We
write

(wIVEP),, =% T\ +T,+Ts+T,), ©)
where

1

T,= dt d , (10)

1 rt f f X awd,

. 1 tyte, d

=, J., —— Jdxwso |, (11
1 10+tr — Uy

g I T LY e T PR

T4~5Vt e [ dxwv, . (13)

To proceed, denote the average

1 tyt+t 3
(fr,.=— ds—— [ (xp+ugs +y,s)dy .
’ t Yt 4mr” ¥ lyl>r
(14)
Using this notation we can write
<w|V§|2>rt = (TI+TII+TIII+‘TIV) (15)
where
‘Z'I=(la|w>,,,r , (16)
C
Tu=——[  dylw(y,to+t,)—w(y,1)], (17D
rot, Ylyl<r
‘Tm=_‘r1< lu—uglw),, , (18)
S, - (19)

Here C denotes some unknown dimensionless constant,
not necessarily identical in all equations where used. We
have T\ =T and T, =Ty from the boundedness of ¢.
The bound for the other two terms follows since ¢, has
bounded derivatives and the dependence of ¢ on x is
through x/r, so V¢ is bounded by C,/r and V2?¢ by
C, /r?, where C, and C, are constants.

At this point we use the fact that a can be written [cf.
Eq. (3)] as a=§&-S: § where S is the symmetrlc part of
Vu, S= 1(Vu+Vu ). We then recognize that « is a diag-
onal component of S in the representation in which £ is a
basis vector. Therefore, we can write

a?<TrS? . (20)
In addition, ;NC have the inequality

TrS?2<|vul?. (1)
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We now define
A= (Va2 w2 22)
With the help of the inequalities (21) and (22) and the
Cauchy-Schwartz inequality we can immediately see that
Ti<A4. (23)

Next we show that 7y can also be bounded by 4. To do
so we use first the Poincaré inequality

fl deu——u(,|25r2fi l dx|Vul|? . (24)
x| =<r

From the Cauchy-Schwartz principle and (25)
Ty <CA (25)

x|<r

follows. The terms 7Ty; and Ty can be bounded by 4 by
making a choice of the ball size r and the averaging time
t,. The time ¢, is fixed by demanding that 7;;<CA.
This translates to the condition

3 [y, dylwy,to+t,)—wly,1y)]

(VP

|

(26)

This is an implicit inequality for ¢,, bounding it from
below by some Ly found by interpreting (27) as an in-
equality. We leave it at that for now since we do not
need a precise determination of ¢, for our later considera-
tions. The ball size r, however, is very important and we
obtain it by demanding that 7y is bounded by A. This
translates to the condition

,Vl/2

S e
([Vuly i/

il

rry 27
While these implicit definitions for r; and ,, look com-
plicated, the dependence on r; and 4, of the averaging

volume is weak and should converge very quickly. Hav-
ing found r, we have

172

t
2 C o 2
(wlVERY,, =3 J, dtflxlirodx|Vu|

Otr'0
172

X (28)

t"
fo Odl‘flxrsrodxw2

This certainly is a finite bound: we can easily give a (far
from sharp) bound if we write instead of (29) a bound that
employs an integration of the whole domain L:

172

(wlvel)y, , <—<

rgit, —
0o vratro

tr
fo °dtf‘x|§dew2
1

Since 1w?<|Vu|? the integral on the right-hand side is
known a priori in terms of €, the mean energy flux per
unit time and mass,

t'()
fo dtf1x|5delV“|2

172

X (29)
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=Y 2
€ K f|x45Ld"|V“' . (30)

We can now estimate A,. Use (29) in (6) and that in the
regions of high vorticity, and for r = r; the following in-
equality holds:

1
(wz>;’/tf<_u7>,,,rsc . (31)

The conclusion is that
A, ZCrg . (32)

So our estimate for the locally averaged length scale A, is
just the size of the smallest ball over which the length
scale needs to be averaged so that we can bound the aver-
aged A.. This scale can be written in a form that is more
familiar to students of turbulence, i.e., that for every
rr,

V3 1/4
= _v( |V“|2>r,t, ] (33)
This is reminiscent of the Kolmogorov scale 7,
r 1/4
=\ , (34)

except that the length 7, differs from % in that the dissi-
pation is computed here as an average over the r ball
rather than over the whole domain. Equation (33) is the
central result of this section.

C. Interpretation of the results

In the preceding subsection we have derived an explicit
local bound on the misalignment of the vorticity field
lines. As we will see in Sec. IV, this bounds the stretch-
ing by self-induced strain. Note, however, that the bound
only holds when the misalignment is averaged over a
small ball, although this ball can be smaller as the local
dissipation gets larger. Constantin and Fefferman show
[3] that if the gradient of £ is bounded uniformly in re-
gions over some threshold in vorticity magnitude, a blow-
up is impossible and the regularity of the Navier-Stokes
equations is guaranteed. In a sense this says that the only
dangerous scenario for a blowup is the crossing of vortex
lines. This is not protected by our bound, which involves
a local average, allowing extremely short-lived events in
which the vorticity can blow up.

The bound (33) is proportional to the viscosity v. Thus
for v=0 we have no bound on the divergence of direction
and we cannot show that vortex lines align. This suggests
that alignment is a viscosity dominated process.
Scenarios have been suggested for the blowup of vorticity
in the Euler equations where at least some vortex lines
converge to a sharp corner [8,9]. The results shown here
for viscous alignment suggest that such a blowup could
be controlled by viscosity. In Sec. VI and the Appendix
of this paper we analyze the effects of diffusion (as caused
by viscosity) on vector fields, such as vorticity. We will
see that viscous mechanisms exist that tend to align vorti-
city vectors.
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Some effort has been made to make the bound (33) as
sharp as possible. In the following we will assume that it
is sharp and that we can take (33) as an equality (up to a
dimensionless constant). The bound then tells us the lo-
cal scale of change in field direction |VE|. This is made
up of a curvature component and components represent-
ing the divergence of the direction £ in the directions or-
thogonal to the vortex line.

If we look at a vortex tube as an essentially coherent,
aligned bundle of vortex lines, we can define a tube
“width” as the diameter of that circle inside which the
lines are aligned. Note that this width does not corre-
spond to the usual definition of a vortex tube, the diame-
ter of the semicylindrical vorticity isosurface. The radial
component of |VE&| represents a local measure of the typi-
cal diameter of the tube. To be precise, if we define the
width of a tube as that diameter over which the direction
of the field changes by some constant, the width is pro-
portional to the average of the radial gradient of £ over
the diameter. First note that this width, the scale of the
radial gradient, is larger than the scale defined by |V£]
and therefore also bounded by A..

If we consider the scaling behavior of the average vor-
tex tube width (again, in the sense used here) with Rey-
nolds number, we would tend to estimate this width as
scaling like the Kolmogorov length. The averaging must
exclude the low vorticity areas to ensure that (31) holds.
This estimate assumes that the bound is sharp, that inter-
mittency corrections do not induce corrections to scaling,
and that no unknown physics causes the curvature to be-
come more dominant with Reynolds number. If the local
structure is not that of a vortex tube, the estimate should
still hold as a misalignment scale, without the interpreta-
tion of a width. In a vorticity sheet, for example, the
scale should correspond to the sheet’s thickness.

To our knowledge our prediction for the typical diame-
ters of vortex tubes, as defined by the coherence of direc-
tion, is untested in numerical experiments. In general
one can estimate the scale of vortex structures by com-
paring terms in Eq. (1) for the vorticity; the rate of the
operation of the strain over this scale should be roughly
the same as the time scale of diffusion over the same scale
so as to have a structure in semiequilibrium. The
diffusion rate over a scale r; is l’Lé If we estimate the
strain as the average straining Ve /v, we get the Kolmo-
gorov length as our estimate for r,. This estimate is self-
consistent since the Kolmogorov-scale strain u, /7 is also
V'e/v. One should note that if we instead estimate the
strain as the integral strain U /L we get the Taylor scale.
It would not, however, have been clear that such rough
arguments would work for the scale of vortex alignment
without our analysis of Sec. II B.

The corresponding estimate to the Taylor scale in the
case of magnetohydrodynamic (MHD) flow gives the skin
depth LR,,'/?, where R,, is the magnetic Reynolds num-
ber, which has often been proposed as the width of flux
tubes in MHD flow [12]. A rigorous estimate parallel to
that given here has been done [13] for the MHD case,
giving as the flux tube width a new length scale that
scales as LRe 3/ 4PA;1/ 2 where P,, is the magnetic
Prandtl number (ratio of magnetic diffusivity and viscosi-

ty). This is also the result of the rough estimate from the
magnetic field equation estimating the strain as the
Kolmogorov-scale strain.

We would like to suggest here that numerical experi-
ments can be run at a series of Reynolds numbers to test
our predictions. We suggest the following way to analyze
the data. First, one needs to identify the region of
“higher vorticity” [to ensure that (31) holds]. This can be
taken as the union of all space points in which the vorti-
city exceeds some fraction of its maximum. We expect
that the results will be insensitive to the value of this frac-
tion, as long as the smallest diameter of any part of this
set is larger than r,. We then need to carefully estimate
A, itself. For this purpose |V&|? should be computed and
averaged over r at each point of the higher vorticity sub-
volume. Using Eq. (4), A, can be calculated and then
averaged over the entire subvolume. Moving to the next
time frame the process can be repeated, until an average
over time larger than L, is obtained. Having found this

estimate at one value of Re, one needs to repeat the pro-
cedure at other values of Re to compare with our expec-
tation that 1/A,~O(Re 3/*). Notice that in our pro-
cedure one does not need to assume that the vortex struc-
tures are circular tubes or even to identify ‘“‘structures.”
It is a procedure that can be fully automated without am-
biguities. Indeed, notice that the ball size r; used in the
analysis and the typical scale A, are essentially the same.
This guarantees that our construction and analysis are
not going to become inappropriate or irrelevant at in-
creasing values of Re.

One can also take Eq. (33) further to predict the varia-
tion in misalignment between points of a given simula-
tion. The prediction is that misalignment is strongest in
areas of higher dissipation. This could mean that when
vortices react, a typical scenario for strong dissipation,
the vortex lines are strongly distorted. This seems
reasonable, although the pointwise prediction is obvious-
ly riskier than the average misalignment scale estimate.
This proposal should also be examined numerically.

We can turn now to the discussion of other length
scales associated with vortex tubes.

III. EULER DYNAMICS OF VORTEX TUBES:
THE RADIUS OF CURVATURE

In Sec. II we focused on one length scale that charac-
terizes the vortex tubes, i.e., the coherence length of the
direction of &, which was interpreted as the diameter of
the tubes. To see the spatial structure of the tubes we
need to examine the radius of curvature and the torsion
of these structures. We do this by examining the curva-
ture and the torsion of the vortex lines, remembering that
these are not quite the same thing. The radius of curva-
ture has the usual definition R ~!=|(£-V)&|. We would
like to examine, in this section, the dynamics of this
length to show that it is indeed large in regions of high
vorticity. The assumption here is that the role of viscosi-
ty is mainly to align the vortex lines into a structure with
coherent dynamics, while the strain is responsible for the
dynamics of this structure once formed, at least for
reasonably large Reynolds numbers. We therefore re-
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strict here our analysis to the Euler terms; the viscous
effects are presented in the Appendix. We derive equa-
tions for the curvature and the torsion directly from the
Euler equations. The equation we derive for the curva-
ture can be shown to be identical to that derived by
Drummond and Miinch [14] (in a somewhat different
way) for the curvature of material lines, not unexpected-
ly; we disagree somewhat, however, on the interpretation.
Basically we are going to show that the same a that ap-
pears as the stretching rate of w in Eq. (2) appears again
as the leading stretching term in the radius of curvature.
We would like to propose that in those regions in which
the vorticity grows rapidly, there is also a process of
straightening up to the vortex lines.

A. Derivation of the equation of motion

We begin the derivation by considering the Frenet
frame [15] of a vortex line. The unit vector in the direc-
tion of the vortex line is §. The second orthonormal vec-
tor, the unit vector in the direction of the curvature, is
denoted by n,

_ (&-V)E
n= . (35)
I(&-V)E|
£ and n are orthogonal since £-(§-V)E=1(§-V)§-£=0
(using £-€=1). The third orthogonal unit vector (the bi-
normal) will be denoted b,

b=£Xn, (36)

where the symbol X stands for a vector product. We
denote the curvature by 1/R and the torsion by 7. The
Frenet equations for the variation of the binormal frame
along the vortex line are

£ o 1/R 0] ¢
(V) n|=|—1/R 0 T||n]|. (37)
b 0 —T 0] |b

The radius of curvature R measures the degree in
which the vortex line is bent, or the deviation from a
straight line. The torsion measures the twist in the direc-
tion of the curvature, or the deviation from a planar
configuration. We will be interested in the dynamics of
R (x,t) and T (x,t). We should stress that these equations
are field equations for locally defined quantities and as
such can be studied in numerical simulations in a com-
pletely well-defined way.

In deriving the dynamical equations of the Frenet
frame we will use two facts. The first one follows from

[D,,(DV]=0 s (38)

which is just the analytical expression of the fact that
vortex lines are material [16] and implies that

[D,,&-V]=—a& V. (39)
The second fact is simply that if a vector v satisfies the

equation of motion D,v=F, then the equation for v/|v|
is
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D,=—=P, |+7 |, (40)
Clvl TV

where Pl is the projection operator that projects on the
plane orthogonal to v, PH(X)=X—(X-v)v/|v|2

Thus we can use the Euler equation of motion of @ it-
self, D,w=w-Vu, to derive, on the one hand,

D,£=S-£—af, (41)
where S is the strain rate tensor, and, on the other hand,
D,E=PS-£=(n-S-£)n+(b-S-£)b . (42)

Because S enters these equations only through the vector
S-£&, we will denote for brevity S, =(b-S-£), S, =(n-S-§)
and rewrite (42) as

D,E=S,n+S,;b . (43)
Now we compute D;n,

D,[(§-V)E]=(E-V)D,E—a(EV)E . (44)
Remembering that [(£-V)&| =R ~! we get from (41)

D,n=RP} (§-V)(S,,n+S,,b)—%n , 45)

which upon using (37) simplifies to
Din=—S,E+R[TS,+(&V)S,]b. (46)

Finally, we can write
D,b=D,(EXn)=—S,E—R[TS,+(§-V)S,In . (47)

Equations (43), (46), and (47) contain the full Euler dy-
namics of the Frenet frame. To proceed to find the dy-

namics of 1/R and T we notice that because
(€-V)E=R ~'n, we have
D, R =n-D,[(§-V)E], (48)

where (46) has been used. Writing now
D,[(&-V)E]=(E- VD, E)+[D,,(E-V)IE, (49)
we end up calculating

1

R

—._a_

D, =— 2 TS, +(£V)S, . (50)

This equation is easily understood. A strain a that pulls
the vortex on both ends straightens it out. If the normal
strain in the plane of the curvature S, increases along the
vortex, the vortex will bend. If the vortex has torsion, so
that it is locally wrapped helically on a cylinder, the bi-
normal lies on the cylinder, normal to the vortex. Pulling
on the coil along the cylinder with strain S, will extend it
and reduce the curvature.
In the very same way we can recognize that

D,T=—n-D,[(£-V)b], (51)

which we end up calculating as
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s
D,T= _aT“LTb +(&V)R(EV)S, +RTS,] . (52)

Equations (50) and (52) are the central results of this sec-
tion.

B. Discussion of the equations of motion

The homogeneous part of Egs. (50) and (52) takes the
form

a S| |R!?

T

R“'l

T (53)

Dt

_Sb a

If this were the whole equation, we could conclude that
(R ~2+4T?) decays to zero like exp(—2 [ a dt) or, in oth-
er words, the vortex tubes straighten up and become pla-
nar at the same rate as w increases, if a is positive.

Unfortunately, the situation is not that simple. Con-
sider, for example, the last term in (50). Dimensional
analysis would say that S, can be of the order of magni-
tude of a and (£-V) can be of the order of R ~'. If so, the
last term could cancel the first term, depriving us of the
exponential growth of R.

In addition, the concept of a homogeneous term in this
case becomes problematic. Drummond and Miinch [14]
derived an equation for the curvature of material lines in
Navier-Stokes flow. Since the vortex lines are material,
the two sets of equations exactly correspond, with the
vorticity in our case corresponding to the line length in
theirs. The equation they derive is, in our terms,

1
R

D, 2_2_(%-@9-11)_ S Wi, (54)

where W is the third rank tensor W =3%u; /3x 0.
The two equations are identical since one can show that

1

=a—TS, . (59

S Wikl yn =(E-V)S, —=n-Snt
Drummond and Miinch too assume that their homogene-
ous term, different from ours, dominates, at least for
short times. In fact, in the two-dimensional case they use
this [17] to deduce that the pth log-cumulant moment of
the curvature goes as (—3)? times the pth log-cumulant
moment of the line length (parallel to our w). They then
verify this using, for the velocity field, a random Gauss-
ian field.

To understand the difference, notice that in order to
have an appreciable effect the strain must operate on the
vorticity field over some length of time in a coherent
fashion. In order for the other strain terms to have a
countereffect on the vortices they must act coherently
through this time with a. If we assume that in general
the strain fluctuates rapidly in the turbulent field, the
behavior will be dominated by the time-coherent terms.

In our case during the vortex growth the stretching
rate ¢ must behave coherently in time in order to create
appreciable amplification of vorticity, since we are look-
ing precisely at strong amplitude vortices. The question
is what other terms act coherently with a. For example,
in the two-dimensional case, by incompressibility

n-§n=—a. In the random Gaussian field that Drum-
mond and Miinch use for their velocity it is reasonable to
expect that the Vu tensor is decorrelated from the VVu
tensor. Then one can expect indeed that the curvature
grows with exp(—3at)~w ~> as Drummond and Miinch
predict and verify.

However, in the general three-dimensional case it is
hard to predict what correlations the structure of the
flow will create and how relevant they will make relations
such as (55). The issue can probably be settled only by an
analysis using numerical simulations. It seems to us that
our way of writing the equation, with the orthogonal
components of the strain separated, each acting indepen-
dently on the geometric properties of the field, is likely to
be a good guide to understanding the dynamics.

In summary, although we cannot prove that the radius
of curvature grows at the same rate of the vorticity mag-
nitude when the latter grows, we have given arguments in
favor of such a possibility. The picture that emerges is of
vortex tubes in which the high vorticity values concen-
trate and which have a diameter of A, and a radius of
curvature that tends to grow at the same rate of the vorti-
city. At any rate we certainly would predict that the
stronger the tubes are, the straighter they are, since while
the strain component a both straightens and amplifies,
the other strain components have no obvious connection
to the tube amplitude. We think that this picture can
and should be tested in numerical simulations and we
shall return to this issue later.

IV. STRETCHING RATE OF THE VORTICITY
AND REGULARITY

A. Preliminaries

In this section we analyze the rate of stretching
a=w(0-Vu)/w? If this quantity could be bounded
from above, we could prove that the initial value problem
does not generate spontaneously finite time singularities.
We shall not be able to bound this quantity. Rather we
shall explore the implications of the picture obtained
above in which the regions of high vorticity seem to form
elongated tubes of diameter A,, a diameter that is bound-
ed from below, and of radius of curvature R that tends to
grow exponentially with the same rate a. We shall show
that this picture has an interesting bearing on the analysis
of a, with a possibility of a link between the mechanism
explored here and the possible regularity of the Navier-
Stokes equations.

We analyze the rate of stretching of the vorticity in a
very simple situation. We will make the assumption, in
line with our remarks in Sec. IIC, that almost all the
variation in the vortex lines in the strong tubes comes
from the curvature of the tubes. More precisely, in the
regions of high vorticity we will make the assumption
that the alignment of the vortex lines is so strong that the
component of the gradient of & orthogonal to £ is much
smaller than the curvature. In other words, we will as-
sume that for any two points x and x+y well within the
intense vortex tubes,
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Iyl

R (56)
for all |y| <A, The image behind this assumption is the
one shown in Fig. 1. The intense vorticity regions that
have a radius A are made of locally parallel vortex lines,
which curve on the scale of R. Outside a A, neighbor-
hood w is small and the direction & becomes quite ran-
dom. We would assume that A, is proportional to the A,
we found in Sec. II since we assume that this is the length
scale characterizing the tube diameters. However, this
assumption is not really critical for our analysis: what we
need is that a well-aligned core with diameter A, exists
where curvature is dominant.

lE(x+y)—E&(x)| <

B. Stretching rate

With these preliminaries we can turn now to the calcu-
lation of the stretching rate a(x). We first recall that the
stretching rate a can be thought of as a diagonal element
of S in a representation in which & is one of the coordi-
nate vectors, i.e.,

alx)=&[S(x)-£] . (57)

We can write this in a more useful way by using the
Biot-Savart law that relates the vorticity to the velocity
field [3]:

u(x)= ————f

From this relation one can calculate [3] the strain ten-
sor S(x) and the stretching rate a(x), respectively,

Xo(x+y)dy . (58)

S(x)= ——f—[y(yx(o)+(9><mmld—"’3, (59)
(x)—i l( -E)det[§,0(x+y), & x)] (60)
ard 2 y.0x+y) ly |3 '

FIG. 1. Well-aligned vortex tube. All vortex lines in the tube
are parallel. Outside the tube the alignment is weak.

In (59) and (60) ¥ is a unit vector in the local direction of
y and det(a,b,c) is the determinant of the matrix whose
columns are the three column vectors a,b,c. The
analysis of a(x) when x belongs to a region of low vorti-
city is relatively easy and is not pursued here. The im-
portant regions for estimating a are of course the intense
vortex tubes, when x is in a A, neighborhood of intense
vorticity. To analyze it we separate the contributions to
the integral (60) to those coming from points x+y which
are in a A, neighborhood and to the rest of the world:

a(x)=a; (x)+a0ut(x) , (61)
dy
ap(x)= fl 1<, 2(y £)det[§,0(x+y),&(x)] ME
(62)
-3 dy
Ay (X) 4 Jag<iyi<L 2(y £)det[¥,0(x+y), E(x) ]| R

(63)

On the face of it, Eq. (62) seems dangerous since it can
exhibit a singularity at the lower bound of the integral. It
is here that Eq. (56) becomes crucial. With its help,
Eq. (62) is estimated as follows: denoting
O =(y-&)det[§,0(x+y),E(x)] we notice that only the
projection of w(x+y) that is orthogonal to £(x) contrib-

utes to Q. Denoting the angle between £(x) and £(x+y)
as ¢, i.e.,

cos(¢p)=&(x)-&E(x+y), (64)
we can estimate

Q <w(x+y)|sin(¢)| . (65)

Using the fact that [sin(¢)| <
(see Fig. 2) that

|2sin(¢/2)| we conclude

O <w(x+y)l&x+y)—E&x)| . (66)

Using Eqgs. (66) and (56) in Eq. (62) we find that

Ao

Wmax 1 » (67

-—f|y\<)n ME w(x+y)=<

where

X(x)

X(x+y) - X(x)

FIG. 2. Typical orientation of the unit vectors £(x) and
&(x+y) and the difference between them &(x)—E&(x+y).



51 CREATION AND DYNAMICS OF VORTEX TUBES IN THREE- . ..

wmaleﬁgo[w(x-{—y)] . (68)

This is the central result of this section and it will be dis-
cussed in detail in the following subsection. It means
that since the vorticity elements stretching another vorti-
city element must be at an angle to it, the rate of stretch-
ing is proportional to the gradient in direction, or to
1/R.

The outer contribution (63) is not dangerous. It is es-
timated to be

dy
lagu(x)| < fkosly\SLT;,Fw(x_FY)

]1/2 172

< 2
- [fostytst dy

freea il
A<yl SL |y|6
(69)
The first root on the right-hand side is just the L2 norm
and we end up estimating
—-3/,2

| @oue(X)] < ]| 2 (70)

-0
L

C. Discussion of the results (67) and (70)

The most elementary scenario for the blowup of vorti-
city is that in which a curved vortex induces a strain that
in turn stretches the vortex, creating a feedback mecha-
nism giving a quadratic growth rate of the vorticity and
thus a finite time blowup. This scenario is also very
dangerous since unlike hairpin blowups, which require
quite specific initial conditions, the requirements for this
picture are very mild. All that is needed is a vortex that
stays curved for a period of time. The results of the
preceding subsection give a plausible mechanism for
evading such a blowup, where as the vorticity inducing
the growth rate grows, the geometry straightens out, and
the ability to induce strain decreases. We have indicated
that we think it likely that the dominant rate of growth
of the radius of curvature during vortex growth is equal
to that of the vorticity. If we accept the picture of
Drummond and Miinch, in the case of strong a the rate
of straightening is even faster than the rate of vorticity
growth. Note, however, that other components of strain
besides a can act to keep the curvature strong at least for
part of the development. In fact, this implies that it is
possible that for the very strongest tubes the correlation
between strength and straightness is attenuated some-
what since those tubes that manage to stay curved due to
nonhomogeneous terms for some time will grow faster
due to the strain self-induced by this curvature.

The mathematical theory of the Navier-Stokes has so
far not provided a proof of the regularity of solutions.
Here we have taken some steps towards a more physical-
ly oriented analysis of this question. The importance is in
the possibility of understanding the nature and origin of
strong events occurring in turbulent flow in nature.
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V. IMPLICATIONS OF THE SCALING THEORY
OF TURBULENCE

In this section we make the connection to the often dis-
cussed possibility of a deviation from the Kolmogorov
scaling picture and the phenomenon of intermittency. In
another paper [5] two of the present authors examined
the scaling theory of turbulence with the help of the
metric properties of the graphs of the velocity field in
3+3 dimensions [4]. The main conclusion there was that
in order to have deviations from the classical scaling pic-
ture one needs to see a tendency towards the creation of
two-dimensional structures. By ‘“two-dimensional”
structures we mean a flow geometry in which the strain
tensor S has a zero eigenvalue with the vorticity being the
appropriate eigenvector (i.e., S-@=0). An isolated
straight vortex tube, in which the strain in the plane is
orthogonal to the tube, is a simple example of such a
structure. We have argued that if the mean eigenvalues
of S are denoted (A;)=(A,)>(A;) (knowing that
A{+A,+A;=0 in incompressible flows), then deviations
from the Kolmogorov picture are expected only if the ra-
tio {(A,)/{A,) has a Re number dependence. Explicitly,
we argued that if this ratio of mean eigenvalues depends
on Re like Re™#, then the scaling exponent of velocity
structure functions can become as high as (1+3)/(3—p),
compared with the classical prediction of 1. The Re
dependence of the ratio (4,)/{A,) can be deduced from
the numerical simulations in [2]. In order to have such a
Re dependence we need to understand why as Re in-
creases there is more and more tendency to create locally
two-dimensional structures.

We believe that the present study is a step in the direc-
tion of understanding this phenomenon. We have seen
above that the vorticity tends to concentrate in elongated
tubelike structures. If all the intense vorticity regions
have a large radius of curvature and the dominant strain
in these regions is induced by the local vorticity, these in-
tense strains will tend to align orthogonally to the tubes.
At least locally the vorticity becomes an eigenvector of S
with eigenvalue 0. If this phenomenon becomes more im-
portant at high Re numbers, we can expect that the ratio
(A,)/{A,) would decrease when Re increases, as is indi-
cated by some numerical simulations [2].

What is sorely missing in our picture is a handle on the
statistics. We imply that the Kolmogorov statistics
should apply in the region of typical vorticity magnitude,
far from the tubes of intense vorticities. The interesting
dynamics and all the different physics is in the vortex
tubes, but we cannot at this stage assess what is the con-
tribution of each region to the global averages. In fact, if
we accept the notion that the high vorticity regions con-
centrate on fractal regions [18] we would expect that
their contributions to the averages of velocity differences
(structure functions) would become smaller for large
values of Re. It is possible that after some intermediate
asymptotics in which (A4,)/(A;) decreases with Re we
would reach a limit in which (A,)/{A;)—const and
asymptotically the Kolmogorov exponents for the struc-
ture functions would be resurrected. For more evidence
for this view, see [19]. Obviously the question of statisti-
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cal averages is wide open. This crucial question, whose
solution is needed in order to offer a reasonable connec-
tion to the scaling theory, must be left for future study,
presumably with the help of numerical simulations.

In numerical simulations one can address the question
of conditional contributions to the overall averages, de-
pending on the value of the vorticity. The eigenvalues of
the strain tensor can be sampled conditionally and the
contribution to any Re dependence can be ascribed to the
vortex tubes if it really comes from there. We think that
such numerical experiments can shed very important
light on the dynamics responsible for the scaling theory
of turbulence.

VI. EFFECT OF DIFFUSION ON VECTORS:
THE SIMPLEST CASE

In this section we will examine the effect of diffusion on
vector fields as a step towards understanding the effect of
viscosity on vorticity structures. The question is one of
some generality. In contrast to the case of the diffusion
of scalar fields, the interest comes from the fact that we
are looking at the behavior not of the vector components,
which indeed diffuse simply as scalars, but at rather odd
functions of them, namely, the amplitude and the direc-
tion of the vectors—the quantities of interest when look-
ing at structures. In addition we are looking not at
asymptotic but at short time behavior, relevant for
coherent structures with finite lifetime. The object is to
see how viscous mechanisms could lead to alignment of
vortex lines in tubes. To do this we first examine the sim-
plest dimensional case, that of two-dimensional vectors
on the line.

In this case we find that if the vector field is written as

v= A(sin(0), cos(8)) , (71)

then
2
Av— | L4 [do ||
A dx? dx
d?e do dA .
+ | A4 an? +2 ‘dx dx ( cos(8), —sin(6))
(72)

or, purely in terms of amplitude and angle,

d_A=AA_|V9|2A , (73)

dt

do _ 2

it =A0+ 1 ve-v4 . (74)

(These are just Kida and Takaoka’s [20] P and R as we
define them in the Appendix.) One expects the amplitude
to decay quickly (exponentially) in areas of variation in 6
due to the term quadratic in the variation. This already
shows that nonaligned regions will tend to be of weak
amplitude. In addition the amplitude is dissipated as a
scalar.

The equation for the angle shows that the angle
changes more slowly, being diffused by the first term.
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The second mixed term represents an interaction between
variation in angle and amplitude. Let us see the effect of
these two terms.

We first consider the angle diffusion term. Consider a
linear array of vectors of constant magnitude, with a con-
stant angle difference between vectors. The above implies
that the vector directions will not change in time. As
with scalar diffusion, there is not diffusion of a constant
gradient, as determined by the border conditions. The
magnitude of all the vectors decays at the same rate. The
same holds true for a circle of vectors of constant magni-
tude all pointing in the radial direction. (This last case
will appear in our analysis of three-dimensional vortices
in the Appendix.)

To understand nonstatic situations we assume first that
we have only the angle diffusion term: for short times, as
in scalar diffusion, a localized sharp change in angle or
angle gradient will be smoothed in time over a larger and
larger range. (In both these cases the vectors in the vicin-
ity of the kink will shrink strongly with time due to the
second term in the equation for the amplitude.) An angle
gradient with a cubic dependence on space will create an
increasing gradient in the direction of the cubic correc-
tion: y=xzax3+t6atx is a solution to the one-
dimensional (1D) diffusion equation, in which the gra-
dient grows in principle without limit. For example, if a
gradient starts to splay outwards in a cubic fashion on
the edges, the gradient in the center will spread out to ac-
commodate it.

We now turn to the effect of the second (coupling)
term. First we look at the situation of a constant ampli-
tude gradient

Ax)=Ag+ax . (75)

As a scalar, this would not be diffused. Given a direction
gradient, the angle will be revolved, with the rate increas-
ing with the amplitude:

do __ 2

ar mve . (76)

All vectors are revolved, but the larger they are, the less
they revolve. Thus the diffusion tends to align the vec-
tors with the largest vector. Near a simple maximum in
amplitude

A(x)~ Ay—ax? (77)

with a linear angle gradient we can solve exactly: writing
the vector as a complex number and approximating the
amplitude as an exponent, the initial vector is

V(t=0)=¢ o tikx (78)
We find the solution of the diffusion equation by complet-
ing the square as

—ax? ikx k%t
Vi+l Vi+l  8a?

V(t)= exp (79)

The phase gradient k /V't +1, in contrast to the case of
pure angle diffusion, decreases in time, increasing align-
ment. In this “near maximum” approximation the align-
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ment is uniform and to get real bunching (i.e., an in-
creased alignment near the maximum) we need a generic
higher term, say a dependence on x>. On the other hand,
as we have seen, the effect of the first term alone on such
a gradient is the opposite—to spread it out instead of
bunching it. A profile can be found, in fact, for which
these two effects exactly balance each other: near a max-
imum A4 ~1—ax? the two terms balance for an angle
gradient of 6=x + 2ax 3. A gradient steeper in angle will
be spread by diffusion and a more gradual one will be
bunched around the largest vector. In the same way near
a minimum the vectors will be repulsed from the smallest
vector. These are only the initial dynamics of simple situ-
ations and further development would evolve the ampli-
tude to a less simple configuration. The conclusion is
that in general diffusion has a tendency to align in the
direction of the largest vector.

In the full dynamics, including strain, we expect these
ideas to still hold. If some local strain creates a sharp
enough peak in vorticity strength, the diffusion should
align the vectors in this region with the large vorticity
vectors.

We tested out these ideas by numerical simulations.
Pure diffusion is trivial to integrate using the Fourier
transform (the integration is done, of course, not in the
amplitude and angle variables but in the usual vector

o
J
h

o
<)

o
=

o
KN

Amplitude

°o o
o N

O e
N
o
o

400 600 800 1000

0.010

0.005

0.000

Angle
7

—0.005

T T T T T

-0.010

600 800

o
N
o
o
S
o
o

1000

5
5

6x107
4x107

o

2x107°

0

—2x1072
5

Angle Gradient

IRRRNEARRRARRERRS?

—4x107
—6)(10_5 - S~
o] 200 400 600 800 1000

X

R I NN I T FUR SEw

FIG. 3. Simulation of diffusion of two-vectors on a line. The
solid line is after integration and the dashed line is the initial
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the gradient of the vector angle. Note the alignment around the
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components.) Simulations starting from an amplitude
with strong peaks indeed show the phenomena of align-
ing around maxima and repulsion from minima (see Fig.
3). (Periodic functions for initial amplitude and angle
were used in order to allow an exact solution.) We see
that near the peaks in amplitude the angle gradient is
suppressed.

A much greater effect was achieved by combining
strain and diffusion. Strain was added by integrating for
the two vector components the equation

dv,'

_dt_ =8 (x)v; +vAvy; (80)
using Interactive Mathematics Software Library/
Interactive Data Language Adams-Gear ordinary

differential equation routine. This isotropic strain (diago-
nal with equal elements) alone should not realign the vec-
tor directions. Indeed when a peaked strain field was
used, a comparison with the same integration without
diffusion, or to integration without strain, shows the
aligning and repulsion effects clearly (see Figs. 4—-6).

To summarize we can say that the alignment is greater
in strong areas, on the one hand, because the amplitude is
reduced by direction misalignment. On the other hand,
strong amplitudes increase alignment by dynamic align-
ing of neighboring vectors. In areas of weak amplitude
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diffusion tends to spread out angle gradients.

The vector line of Eq. (71) will describe, when we ad-
dress the three-dimensional problem, the dynamics of the
vectors on the plane tangent to the vector line. To see
what the dynamics are along the vortex line, we will look
at the case of what we will call diffusing filaments. These
are constructed in the same way as vector lines in a vec-
tor field: we start as in Eq. (71) with a line of 2D vectors.
We then construct a line in the 2D plane so that the
direction of the tangent to the filament is given by the
direction of the vector at each point. The magnitude on
the line is given by the vector amplitude. The unit vector
in the tangent direction at each point is §. In these terms

|VO|=|(&-V)El=c , 81)

¢ being the curvature of the filament.

We now assume that these vectors obey a 1D diffusive
dynamics along the filament. The equations are just the
same as in Sec. V, but in our new terms translate to

AW _ A —ctw (82)
dt

a8 _ .. 2,

eVt SEVw . (83)

Thus the amplitude diffuses along the filament, with an
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added exponential decay from curvature. The dynamics
of £ show two different terms. The first, corresponding to
the diffusion of 8, acts to diffuse away maxima like any
diffusion. Since a maximum angle exists at points of
inflection, the diffusion will flatten these and thus tend to
straighten the curve. The second terms tends to align the
tails of a filament segment of strong magnitude with that
segment, if they are curved. Thus diffusion on a filament
tend to straighten, to diffuse amplitude, and to reduce
curvature. We can see in Fig. 7 how filaments are
“ironed out” by diffusion. Such filaments can be drawn
and their diffusion integrated in three dimensions with
very similar results.

N
o
(=]

150

o
o
I 11

o
o

Ll

[=)

i

|
S
o

Qo
o

O [T T T T T
T T

T

-150

L L s L L
200 400 600 800 1000

FIG. 7. Diffusion of vector filaments.



51 CREATION AND DYNAMICS OF VORTEX TUBES IN THREE-. ..

The full three-dimensional case of diffusion of vectors,
in particular the question of alignment of vortex tubes, is
much more complex. In the Appendix we present the
equations governing the vortex lines and will see that
they may well be largely understandable in terms of the
simple cases considered here.

VII. CONCLUSIONS

We have presented a selection of results on the struc-
ture of the field of vortex lines in turbulent flow. All the
results are connected in some way with the question of
the blowup of vorticity in Navier-Stokes flow since it is
the geometry of the vortex lines that determines how the
vorticity induces that strain that in turn amplifies the
vorticity. We think that the results are also interesting in
their own right.

We first bound the variation in vorticity direction.
This bound is ascribed to viscous effects. The result con-
trols the possible magnitude of the locally induced strain.
If indeed blowups do not occur this could well be an im-
portant effect. The bound is also interpreted as an esti-
mate for the typical width of vortex tubes as observed in
simulations.

We analyze the nonviscous dynamics of the curvature
and torsion of the vortex lines. We show that strong vor-
tex tubes should be straighter and that it is likely that
these tubes will straighten out as they are amplified (a
stronger assumption).

We then examine the stretching rate of the vorticity, in
particular its self-stretching (that locally induced). We
see that the curvature dynamics implies that self-
stretching will be limited, and finally controlled, by the
straightening of the vortices.

The straightening of the vortices is also linked to possi-
ble departures from simple (Kolmogorov) scaling. The
resultant local tendency to two dimensionality leads to
strain anisotropy, which has been shown to be a condi-
tion for a departure from scaling.

The effect of viscosity on the vorticity vectors is ana-
lyzed in Sec. VI and in the Appendix. Among other
things we see that the viscosity can indeed enhance align-
ment locally due to effects of dynamic alignment of vor-
tex lines. It remains to check in numerical simulations
whether the time scales of these effects allow them to
make a significant difference to the field vector alignment.

The dependence of vorticity alignment on the strength
of the local vorticity is seen to be complex. On the one
hand, dynamic alignment should be enhanced in regions
of strong vorticity. The viscous effects shown here tend
to work better in regions of strong vorticity, while a
coherent strain would tend to create by stretching a re-
gion of vorticity vectors coherent in direction too. On
the other hand, vortex line divergence can create locally
induced strain leading to nonlinear growth, thus causing
a correlation of magnitude to misalignment. This means
that while it is difficult to predict the dependence of
alignment on vorticity strength, the results contained
here should allow a more ready understanding of numeric
measurements of such a dependence.
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APPENDIX:
VISCOSITY AND CONVECTION IN VORTICES:
THE THREE-DIMENSIONAL CASE

We will speak here occasionally of the fate or evolution
of vortex lines, although these are not defined in the full
sense in the viscous case, not being material. They are
defined at any given moment for a given vector field away
from zeros of the field and their configuration has to
change smoothly. We will speak about the behavior of
lines only in such situations and in this sense as an aid to
understanding. We will speak of vortex tubes in the same
sense—as far as in some (possibly Lagrangian) region the
vortex lines from moment to moment tend to stay in a
fairly coherent, fairly aligned bundle, we will refer to this
as a vortex tube.

The viscous term in the vorticity equation was decom-
posed by Kida and Takaoka [20] in the following way:
the viscous term vAw is divided into the component in
the direction of the vorticity,

P=EAo (A1)

and the orthogonal component R=Aw@—&P. The former
expresses the difference between the stretching of the ma-
terial element and that of the vorticity and therefore the
dissipation (or growth) of vorticity magnitude; the latter
expresses the rotation of the vorticity vector off the ma-
terial line, leading to displacement of the vortex off the
material line. In fact, Kida and Takaoka originally pro-
posed the latter quantity as a probe or marker for recon-
nection activity in simulation data. This decomposition
of the viscous force corresponds to considering the mag-
nitude w and direction of the vorticity separately; doing
this we see that the viscous terms for the vorticity evolu-
tion are

D,w=vP , (A2)

v
D= ER . (A3)
Both can act to bring about a vortex field exhibiting
alignment: the P by killing the field where not aligned,
the R by rotating the vectors so that they point in the
same direction.
By substituting @ =w& we find that
Ao=EAw +twAE+2(Vw-V)E (A4)
so
P=Aw—+w&AE+2E-(Vw-V)E . (A5)

The first term expresses the expected simple diffusion of
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w, which acts to smooth out the w distribution, and acts
against the strain creating and stretching the vortex. The
second term is always negative; in fact

EAE=—|VEP.

Thus any spacial variation in £ causes a drain in the vor-
ticity.

We will now represent everything in the binormal
frame. This will allow us to understand the equations in
terms of the simpler dynamics of Sec. VI. In terms of the
binormal basis (£,n,b) the second term is

IVEI?=c2+|(n-V)E|>+[(b-V)E|?,

(A6)

(A7)

where c is the curvature, so we have a contribution from
curvature and from orthogonal gradients of &, i.e., diver-
gence of lines in the orthogonal plane. The third term
when expressed using the binormal basis is

E(Vw-V)E=[(n-V)w]&(n-V)E+[(b-VI)w]E-(b-V)E
(A8)
and is therefore zero. So

P=Aw —w|VE|?. (A9)

Thus with respect to P our analysis of the full three-
dimensional case just corresponds to our analysis of the
simple 2D case. The same is not true, however, for R
where other types of viscous effects appear. The com-
ponent of R in the n direction is

R,=wn-Af+2[(n-V)w]n-(n-V)§

+2[(b-V)w]ln-(b-V)E+2c[(§-VIw] . (A10)

The 7 component can be found similarly and has the
same form except that it is lacking the last term.

Let us examine some more special cases to see what
effect these terms would have. There are two opposing
types of vortices we can look at (see Fig. 8). One is a vor-
tex where all the £ are perfectly aligned and vary only in
the direction of £ itself due to curvature and torsion; this
we call a cylindrical vortex. (This configuration is not
realizable globally, but we will assume that that is han-
dled through a long-range cutoff function that does not

N
N
W
o b)

FIG. 8. Two types of simplified vortices: (a) cylinder vortices
and (b) neck vortices.
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make much difference to the derivatives near the vortex
center.) These are reminiscent of the filaments of Sec. VI,
but exist in three dimensions. The second example is that
of an axially symmetric vortex with a straight backbone,
possibly with cross section undulating along its length,
which we call a neck vortex. This is the important exam-
ple for the study of alignment since it shows us whether
viscosity keeps vortices aligned.

The simplest 3D effect of viscosity on a vortex is dissi-
pation of circulation,

D,r=D, [w-da=v [ Aw-da, (A11)
the integration being over some area. We choose the area
of a circle centered on the vortex backbone and orthogo-
nal to the vortex direction there. In the case of the cylin-
drical vortex da is at all points in the direction of § and
we simply have

D,T=v[Pda, (A12)
which, using the results for P below, is
D, I'=—2vrr L (r)—<a—w>, —vrwric?, (A13)
or or

where (0w /dr ), is the average vorticity gradient out to
r, [w(r)—w(0)]r. A sharper than average gradient at r
gives a flow outward of circulation. Curvature decreases
circulation through a quadratic term.

In the general case we can use the identity

Aw=—VXVXw+V(V-0) (A14)
and find that the dissipation is
D,r=v$ (VXa)dl . (A15)
c

In the neck case dl is parallel to b and we find, by way of
the result

VX&=cb, (A16)
true for neck vortices that
D,T'= —27vr|(n-V)w|+27vrcw , (A17)

where c is the curvature. The first term is the dissipation
of circulation down the vorticity gradient out of the vor-
tex. The second term represents the contribution of the
curvature to the dissipation. It is only linear; we see that
the effect of curvature is screened relative to the cylinder
vortex case. The sign depends on the configuration—the
curvature dissipates circulation out of a bulged vortex
and into a pinched vortex.

We return to our analysis of P and R for these two
cases. In the cylindrical case clearly

P=Aw —wc? (A18)
and one can show that
R=wcTb+w[(£-V)cln+c[(§-VIwn, (A19)

where T is the torsion. The viscosity tends to dissipate
the vortex wherever curved. This same curvature creates
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a self-induced strain tending to amplify the vorticity.
Since the strain is linear in the curvature, the dissipation
should win in time for strong curvatures.

We see that we have just the same terms for R as in the
filament case, in addition to a torsion term, since we are
living in 3D space. One can easily see that this term will
tend to ‘““unwind” a helical twist in a vortex. On such a
helical vortex, lying locally on a cylinder, the direction b
is on the cylinder normal to the vortex. The new term
tends to distend the vortex along the cylinder.

We now look directly at the equation for the evolution
of the curvature of a vortex. Actually in general the
effect of viscosity on the vortices is a little more compli-
cated than presented up to this point. We described the
viscous force R as bending a vortex by pushing it side-
wise or, more precisely, by pushing it more than it is
pushed nearby. However, the viscous part of the equa-
tion for the general evolution of the vortex curvature is

D,c=vn- R+ ®ve. (a2
w w

(§-V)

In the first term the displacement force R /w appears as
an effective curvature component of the strain (although
one that is a local function of the vorticity). If there is a
gradient of this effective strain along the vortex line it
will bend the line. However, we have an additional term,
although it does not appear in the case of the perfectly
aligned cylindrical vortex. It expresses the fact that due
to the rotation of the vectors and the reconfiguration of
the field into vortex lines, the vector may now be on a
new line with different curvature.

Let us now substitute in our expression for R. The first
gives

_ v 2 2 2c 2c ,
Dic=—|—cT Fcee+— +— - ,
AR g e T Wee T T e

(A21)

where the £ subscript means differentiation along the vor-
tex (i.e., £-V), or

v
D,c=—u—)-[—a(§)c +b(§)c§+c§§] , (A22)
where
w 2 w
a=T*+2 |—= | —2 |5 (A23)
and
We
b=2—= (A24)
w

If there is no variation of the vorticity magnitude along
the vortex, we see that we have a diffusion of the curva-
ture along the vortex, together with an exponential decay
in curvature—straightening—in helical areas with a
nonzero torsion. In a (small enough) neighborhood of a
maximum in vorticity (wg/w)2~2(w§§/w)>0 and this
increases the vortex straightening. If the vorticity peak
stems from self-induced strain due to a sharp curve in the

vortex this will alleviate this nonlinear growth. The ¢ €
term may cause waves of curvature along the vortex—
this issue has not been investigated yet.

In the case of a neck vortex we have as we recall a £
Laplacian term and a mixed w-£ term. R is in the n
direction because of the axisymmetric configuration.
Note that b is the 6 direction in cylindrical coordinates.
At the point considered, we call the distance from the
vortex axis r and the angle of £ from the z axis ¥. Each
vortex line has curvature ¢ and the lines diverge in the
r-0 plane. This divergence is quantified by n-(n-V)E.
Since this is the same as —&-(n-V)n, which is the curva-
ture of the n field, we label it c,,.

The symmetries of this case simplify the & Laplacian
and the end result is that

R,=wn-A£+2n-(Vw- V)& (A25)
=R1ine+Rﬁl+R3D ’ (A26)

where
Rjp.=w(n-V)c, +2[n-Viw]c, , (A27)
R4y=wn-(&-V)c +2[(&-Vw]e , (A28)

and

R, =wcb-(b-V)E+we,b-(b-V)n+wn-(b-V)(b-V)E .
(29)

So again in the binormal frame we can see that the Ry,
terms are just the terms we had in the equations for a fila-
ment in Sec. VI and as we have seen the tendency of these
is to iron out the vortex filaments making up the vortex
tube. The Ry; . terms just correspond to the terms in the
equation for vectors on a line, here the vectors along the
radius of the tube.

The remaining R terms are different and exist only in
three dimensions. From the fact that on a circle
dg” =1/r, we can see that these terms are just

Rsn=(i)”§ﬁ:~@c+(i)”"~—4’—°°sf e
pn, o, Pe cos(y)sin(y)
() (i)f—rsz—_

n

(A30)

The signs p, and p, are determined by whether the vector
fields & and n point outwards (+) or inwards (—) in the
radial direction.

The last term is just the Laplacian in the axial direc-
tion. From examination it tends to act outwards on
pinches and inwards on bulges in the tube and thus to
straighten out the tube. One can understand this in
terms of our 2D analysis even though this is a purely 3D
phenomenon—it stems from the fact that the radial com-
ponents of the vortex lines make up a ring of vectors
whose value, as we saw in the 2D analysis, decays ex-
ponentially in time. Thus the radial component, the
departure from a straight vortex, decays in time and the
tube tends towards being straight.

The dissipation force P equals
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)
P=(VVuw)y+(VVw),, —we?—wel—wI ¥ (a3

r
where (VVw),=3§;£;0;0,w and likewise for the n-n
component. The first two terms come from the Laplacian
of the vorticity magnitude and the last three from the
lack of alignment in the direction field. The last term, as
we just saw, results from the curvature inherent in a cir-
cle of vectors, just like the straightening effect just men-
tioned.

The other two terms are single derivative terms result-
ing from spatial variation of the frame, here the binormal
frame, or more precisely from derivatives of the scale fac-
tors of the frame. They are exactly analogous to the “ex-
tra” (1/r)(3/0r) term in the Laplacian in cylindrical
coordinates. Their effect on a vortex pinch is ambiguous
in that they distort, but do not simply pull out or push in
a pinch in a vortex.

In summary, along the vortex the viscosity tends to
smooth out the vortex lines. On the plane normal to the
vortex the viscosity will tend to align the vortex vectors
parallel to the strongest filament in the vortex.

In conclusion we discuss briefly a third kind of effect,
that of convection, on vortex lines. The effect of convec-
tion on vortex lines, being nonlocal, can be nontrivial in
the sense of not being ignorable even in a moving frame.

We look first at the case of a neck vortex. Let us look
at the velocity, at a point that we take as x=0, as induct-
ed by the vortex. This velocity is, by the Biot-Savart law,

-1 yXaoly)
u 27Tf

vortex y

d3y . (A32)

We use a frame where y, is in the direction of the closest
point on the vortex core line, y; in the direction along the
vortex, and y, in the transverse direction. Then the sym-
metries of the problem are

wi(y)=—w,(=y;), (A33)

wy(y)=wy(—yy), (A34)
and

w3y )=ws(—y,). (A35)

From this it is easy to see that the only velocity com-
ponent is in the y, direction, i.e., in cylindrical coordi-
nates we have u, =0, u, =0. This means that the vortex’s
self-inducted velocity alone cannot swell or pinch (or, in
fact, stretch) the tube. However, the u,, if varying (as is
very reasonable) along the undulating vortex, can twist
the vortex lines into a helical configuration.

In the case of the cylinder vortex, convection can dis-
turb vortex line alignment. For example, in this case we
have seen that the leading term in the self-induced veloci-
ty in the center of the vortex, for vortices whose width is
much smaller than their radius of curvature, is a velocity
proportional to @ and the curvature in the binormal
direction. Points off the vortex center will have the same
term but multiplied by some factor depending on the dis-
tance from the center, so the motion of the tube in this
velocity deforms the vortex cross section. Finally, note
that convective effects on the lines are inversely propor-
tional to the scale of the vortex curvature and torsion and
can be limited to this extent.
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